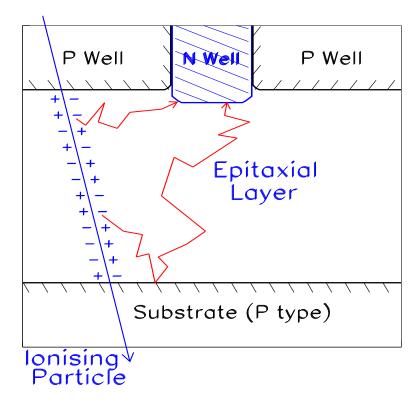
Status and Plans of CMOS Sensor R&D

M. Winter on behalf of the IReS-LEPSI (and coll.) R&D teams

► Introductory remarks:

- important fabrication parameters
- summary of prototypes fabricated since 1999

▶ Results and potential of the sensors:


- spatial resolution
- material budget
- read-out speed
- radiation tolerance

▶ Plans for 2003

- sensor and its r.o. architecture
- integration in vertex detector

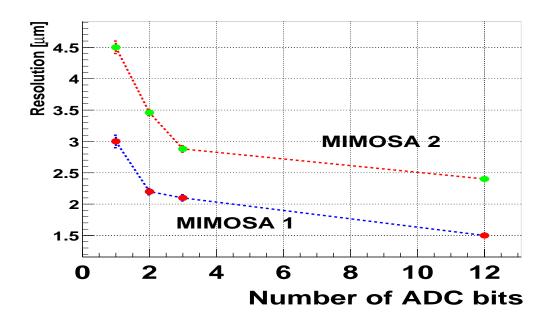
Fabrication parameters

▶ Principle of Operation:

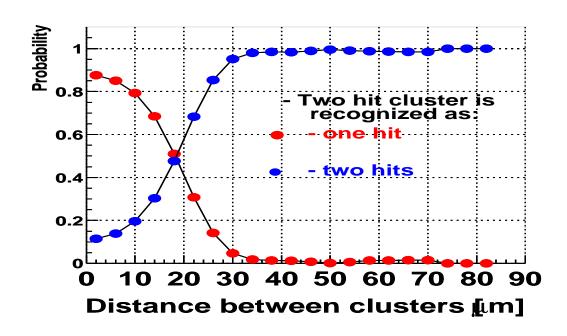
▶ Requirements:

- \diamond thickness of epitaxial layer should be > 5 μm
- \diamond nb of metal layers should be > 3
- \diamond fabrication feature size should be \lesssim 0.35 μm
- fabrication process should be analog
 - ⇒ Exploration of fabrication process is still an important task

Summary of prototypes fabricated


► 6 MIMOSA prototypes fabricated since 1999

chip	year	process	epi.	pitch	metal	peculiar
M1	1999	$egin{array}{c} \mathbf{AMS} \\ 0.6 \mu m \end{array}$	14 μm	20 μm	3M	thick epitaxy
M2	2000	$\begin{array}{c} \textbf{MIETEC} \\ \textbf{0.35} \mu m \end{array}$	4.2 μm	20 μm	5M	thin epitaxy
M3	2001	IBM 0.25 μm	$2\mu m$	8 µm	3M	$\begin{array}{c} \textbf{deep} \\ \textbf{sub-}\mu m \end{array}$
M4	2001	$\mathbf{AMS} \\ 0.35 \mu m$	0!	20 μm	3M	low dop. substrate
M5	2001	$egin{array}{c} \mathbf{AMS} \\ 0.6 \mu m \end{array}$	14 μm	17 μm	3M	real scale
M6	2002	ΜΙΕΤΕ C 0.35 μm	4.2 μm	28 μm	5M	col. // r.o. int. spars.


- ▶ MIMOSA-1, -2, -3, -4, -5 tested (in particular with 120 GeV/c π^- at CERN-SPS)
- **► MIMOSA-6: tests starting now**

Spatial resolution

- $ightharpoonup \sigma_{sp} \sim$ 1.5 (2.2) μm with 14 (4) μm epitaxial layer \hookrightarrow is \lesssim 2 μm necessary ? (will be investigated in 2003)
- ▶ single point resolution as a function of ADC-bit encoding: $\sigma_{sp}\sim$ 2-2.5 μm for 3 bits (\sim 3-4 μm for 1 bit ...)

double track resolution: excellent down to 30 μm distance

Material budget

▶ chip thickness:

- \diamond 120 μm works already with MIMOSA-5 (3.5 cm 2 chip)
- \diamond 80 μm under way with MIMOSA-5
- $\diamond \lesssim$ 50 μm under devt (results expected in March 2003)

stitching:

- \diamond industry standard: $\lesssim 1 \ \mu m$ band between chips
- production yield of chips is crucial to make ladders

▶ mechanical support:

- depends on stitching possibility
- alternative designs under study (with their csq on physics)

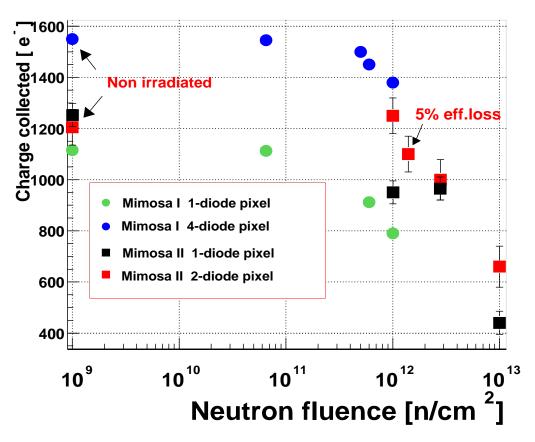
▶ cooling:

- ont needed in principle
- ⋄ but may help reducing S/N
 - $(\Rightarrow$ more integrated functionalities, better $\sigma_{sp,2tr})$
- \diamond data treatment inside pixel may produce P_{diss} of up to a few 100 $\mu W/{\rm pixel}$ during pixel read-out (only !)
- \Rightarrow using at least part (1/10 ?) of collider duty cycle is crucial
 - \hookrightarrow switch on/off tests of MIMOSA-5 & estimates of max. $\overline{P_{diss}}$ without heavy cooling planned in 2003

Read-out speed

- ightharpoonup single pixel $\mathbf{f}_{r.o.} \gtrsim 50$ MHz achievable
 - \Rightarrow 2 cm long columns of 10 3 pixels can be read-out in \lesssim 20 μs

BUT signal treatment inside pixel requires several clock cycles


- $\Rightarrow \lesssim$ 50 μs ladder r.o. time needs to be demonstrated \hookrightarrow non trivial data flux reduction problem (as for any of the technologies considered)
- ▶ on the other hand, full signal treatment at chip periphery may not be the optimal solution because it suffers from the dispersion of pixel characteristics
- ► natural choice to ensure high frame r.o. speed: group pixels in (short) columns perpendicular to beam dir.

BUT: \diamond passive surface hosting col. r.o. μ circuits inside \mathbf{V}_{fid}

- \diamond (presumably) substantial \mathbf{P}_{diss} inside \mathbf{V}_{fid}
 - \Rightarrow question/optimum will be investigated in 2003

Radiation tolerance

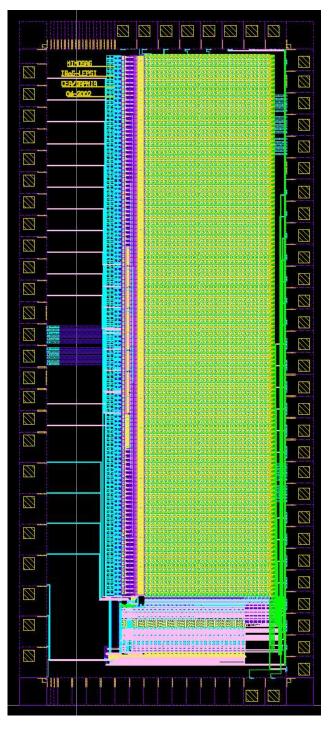
► Neutrons (irradiation of up to $10^{13} n_{eq}/cm^2$):

- \diamond modest increase of leakage current / noise observed (\lesssim 10 %) \Rightarrow fluences of \lesssim 10 12 n_{eq}/cm² acceptable
- **▶** Ionising radiation:
 - ♦ few 100 kRad acceptable
 - \diamond better if T $<< 0^{\circ}$ C (?)
- ► Ccl: radiation tolerance at a FLC should not be an issue

Plans for 2003

► test MIMOSA-6: column // read-out with data treatment micro-circuits integrated inside pixels and on chip periphery

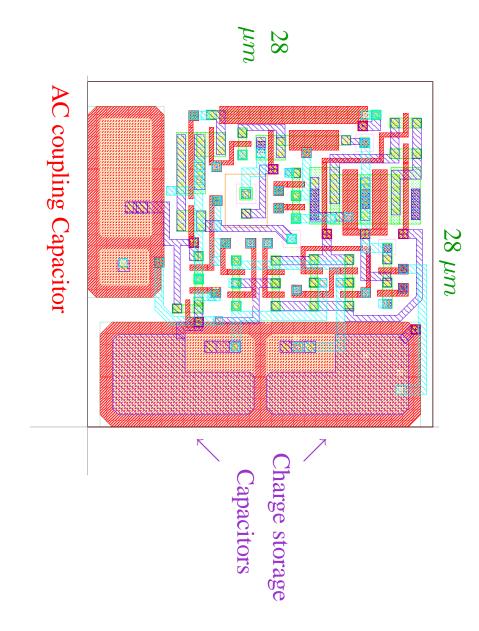
(see next transp. \rightarrow)


- **▶** design successor of MIMOSA-6 (larger surface ?)
- **▶** continue exploring fabrication processes:
 - \diamond 0.25 μm TSMC (8 μm epitaxial layer)
 - \diamond 0.35 μm AMS (8 μm epitaxial layer)
- ► continue investigating potential of MIMOSA-4 fab. process (0.35 μm AMS: no epitaxial layer but low doping substrate)
- ▶ achieve \lesssim 50 μm thinning on real scale chip (MIMOSA-5)
- **▶** work on tolerance to ionising radiation (not really for FLC)

--- 00000 ---

- design first DAS circuits
- study various versions of mechanical support (with/without stitching) and evaluate the influence of their mat. budget on the measurement performances of physics processes (e.g. $t\bar{t}H$)
- ullet evaluate average P_{diss} : detector simulations, switch off/on tests with MIMOSA-5
- continue studies based on physics processes aiming for the best compromise between granularity, r.o. speed and mat. budget

MIMOSA-6 global layout


▶ 1st sensor with sparsification integrated / substrate:

- > amplification (x5.5) and noise suppression (CDS) on pixel
- discriminator integrated on chip periphery (1 per column)
- \clubsuit 0.35 μm MIETEC technology (same process as MIMOSA-2)
- \clubsuit 30 columns read-out in $\downarrow \downarrow$:
 - > 128 pixels per column
 - > 30 MHz r.o. frequency
 - > 6 clock cycles per pixel
- \Rightarrow 5 MHz effective r.o. frequency
- < $P_{diss} \sim 500 \ \mu W$ per column and frame r.o. cycle
- ♣ IReS-LEPSI / DAPNIA collab.
- ♣ back from foundry: tests starting in Strasbourg and Saclay⇒ first results in February-March 2003

MIMOSA-6 pixel layout

Correlated double sampling integrated on 28 x 28 μm^2 pixels (designed by IReS - LEPSI)

- charge stored in transistor connected to n-well is amplified
- 12 amplified charge is stored in 1st capacitor
- w amplified charge stored in 2nd capacitor (previous event) is subtracted from charge in 1st capacitor
- result is sent to end of column for discrimination
- charge is read again, amplified and stored in 2nd capacitor